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Introduction

Amyotrophic lateral sclerosis (ALS) is a common adult-
onset neurodegenerative disease leading to paralysis and
death typically within 2–5 years of diagnosis. Approx-
imately 10% of ALS cases are inherited, with the re-
mainder of cases being sporadic in origin. This distri-
bution of familial and sporadic disease is similar to other
adult-onset neurodegenerative diseases, such as Parkin-
son disease and Alzheimer disease (see, e.g., Przedborski
et al. 2003). The annual incidence of ALS is 1–2 per
100,000, leading to a lifetime risk of developing ALS of
1 per 800 (Cleveland and Rothstein 2001). Except for
atypical variants of ALS, the familial form of disease is
clinically indistinguishable from the sporadic cases (see,
e.g., Hand and Rouleau 2002). There is a slight male-
to-female preponderance (1.3:1–1.6:1) that appears to
be decreasing (Nelson 1995). Similarly, some epidemi-
ologic studies suggest that the overall incidence of ALS
is rising (Riggs and Schochet 1992).

Pathologic features of ALS include loss of motor neu-
rons in the spinal ventral horns, most brainstem motor
nuclei, and motor cortex. Interestingly, Onuf’s nucleus,
which controls urethral and sphincter function, and mo-
tor neurons in the oculomotor, trochlear, and abducens
cranial nerve nuclei are spared. Histopathological fea-
tures include ubiquitinated inclusions in lower motor
neurons and axonal swellings that are thought to contain
disarrayed neurofilaments (Ince 2000). It is thought that
the process of ALS begins with an initiation or triggering
event, followed by the propagation of motor neuron de-
mise up and down the spinal cord (see Armon [2003]
for a detailed description of this hypothesis). The exact
mechanisms underlying the selective motor neuron de-
generation in ALS remain elusive, but experimental
evidence implicates many potential factors, including
oxidative damage, excitotoxicity, apoptosis, abnormal
neurofilament function, defects in axonal transport, ab-
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errant protein processing and degradation, increased in-
flammation, and mitochondrial dysfunction (Cleveland
and Rothstein 2001; Bruijn et al. 2004). Although hy-
potheses abound, it is difficult to determine which of
these processes is most important in triggering cell dys-
function and death and what determines the selective
vulnerability of motor neurons.

The World Federation of Neurology diagnostic cri-
teria for ALS include the presence of upper and lower
motor neuron degeneration with a progressive pheno-
type in the absence of evidence that indicates other dis-
eases (Revised Criteria for the Diagnosis of ALS Web
site). Typically, there is no cognitive impairment or loss
of sensory nerve function, although there are ALS var-
iants that include these symptoms. Upper motor neuron
signs include clonus and hyperreflexia, and lower motor
neuron signs include atrophy, weakness, and fascicu-
lations. ALS diagnoses are categorized as “clinically def-
inite,” “clinically probable,” and “clinically possible,”
on the basis of the number and location of the cardinal
signs. The diagnosis of ALS is often one of excluding
other diseases and waiting for the disease to progress
to meet the full diagnostic criteria. A variety of studies
are often performed to exclude syndromes that have
symptoms that mimic ALS, including postpoliomyelitis
syndrome; multifocal motor neuropathy; endocrino-
pathies, especially hyperparathyroid or hyperthyroid
states; lead intoxication; infections; and paraneoplastic
syndromes (Motor Syndromes Web site; Revised Cri-
teria for the Diagnosis of ALS Web site).

Genetics of ALS

There is an obvious genetic component in only ∼10%
of ALS cases; these cases exhibit significant phenotypic
and genetic heterogeneity. At least 12 genetic loci, with
dominant, recessive, and X-linked patterns of inheri-
tance, have been associated with familial ALS and re-
lated ALS syndromes (table 1). Although specific genetic
alterations do not appear to cause sporadic ALS, a num-
ber of potential susceptibility and modifier loci have been
identified (table 2). I will discuss the genes and loci that
have been implicated in the causation and/or suscepti-
bility of both sporadic and familial ALS.
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Adult-Onset ALS Genes

There are at least six dominantly inherited, adult-on-
set ALS genes (table 1); however, only the gene for
ALS1 (MIM 105400)—copper-zinc superoxide dismu-
tase (SOD1 [MIM 147450]), on chromosome 21q22.1—
has been identified. Mutations in SOD1 account for
∼20% of familial ALS (Rosen et al. 1993). Identifying
the genes causing the remaining 80% of familial ALS
cases will be challenging, since many of the remaining
loci appear to segregate in individual families.

Cytoplasmic Copper-Zinc Superoxide Dismutase

The first ALS-associated gene to be identified was the
SOD1 gene, on human chromosome 21 (Rosen et al.
1993). SOD1 is a 153–amino acid protein, containing
one copper and one zinc, that is predominantly located
in the cytoplasm as a homodimer. SOD1 detoxifies su-
peroxide, creating oxygen and hydrogen peroxide, which
can then be cleared by catalase and glutathione peroxi-
dase. Copper is required for SOD1 activity, whereas zinc
is thought to stabilize the protein structure. To date, 1100
unique mutations in SOD1 have been identified (Ander-
sen et al. 2003; alsod.org Web site). The majority of mu-
tations in SOD1 are missense mutations, with a small
percentage of deletion and insertion mutations that result
in prematurely terminated SOD1 polypeptides. The ex-
pression of a mutant SOD1 polypeptide, with or without
residual SOD1 activity, is necessary to cause the ALS phe-
notype, suggesting a dominant negative mechanism rather
than one of haploinsufficiency. Even after 110 years of
investigation, the exact mechanism of SOD1-mediated
pathogenesis remains uncertain.

There is considerable phenotypic variation in SOD1-
mediated ALS, including age at onset and severity and
rate of decline; however, this can only partly be ex-
plained by the spectrum of mutations. Because clinical
variation occurs among patients of the same SOD1 ge-
notype and members of the same family (Andersen et
al. 1997), it is apparent that the phenotype is modified
by other genetic and/or environmental factors. One ex-
ample is the D90A SOD1 mutation, which is recessive
in some genetic backgrounds but dominant in others (Al-
Chalabi et al. 1998). The recessive D90A SOD1 mu-
tations share a common founder haplotype, suggesting
that there is a linked cis-acting protective factor that
makes this mutation recessive in this specific genetic
background (Parton et al. 2002). Genetic background
also affects other forms of SOD1-mediated ALS. Al-
though it causes one of the most severe forms of the
disease, with death typically occurring !18 mo after di-
agnosis, the penetrance of the A4V SOD1 mutation is
only 91% (Cudkowicz et al. 1997). Similarly, the A89V
SOD1 mutation shows incomplete penetrance and var-

iable age at onset (Rezania et al. 2003). The variable
penetrance and age at onset caused by SOD1 mutations
can be mimicked in transgenic mouse models of ALS,
by varying the mouse strain on which a mutation is
carried (Kunst et al. 2000).

Transgenic mice that develop ALS-like phenotypes
have been constructed with at least nine forms of mu-
tant human SOD1: A4V, G93A, G85R, G37R, D90A,
L126Z, H46R/H48Q, H46R/H48Q/H63G/H120G, and
G127insTGGG (Dal Canto and Gurney 1995; Wong et
al. 1995; Bruijn et al. 1997b; Brannstrom et al. 1998;
Deng et al. 1999; Wang et al. 2002, 2003; Jonsson et
al. 2004). Another mouse model of ALS was generated
using the mouse gene with a G86R mutation that cor-
responds to the human G85R mutation (Ripps et al.
1995). Transgenic rats, carrying G93A or H46R SOD1,
also develop ALS-like phenotypes (Nagai et al. 2001;
Howland et al. 2002). Although each model of ALS is
phenotypically consistent for a given mutation, they vary
in their age at onset, disease progression, and certain
histopathological features, mimicking the diversity of
phenotypes observed in human ALS. In the mouse and
rat models of ALS, the mutant SOD1 allele is expressed
in the presence of the two endogenous copies of the wild-
type SOD1 gene; thus, the mice and rats have either
normal or increased SOD1 activity levels, depending on
the activity of the SOD1 mutant expressed. However,
SOD1 overexpression is not the cause of ALS, since mice
overexpressing wild-type human SOD1 do not develop
an ALS-like phenotype (Dal Canto and Gurney 1995;
Wong et al. 1995). In G93A SOD1 mice (Jaarsma et al.
2000) but not in G85R SOD1 mice (Bruijn et al. 1998),
overexpression of wild-type SOD1 accelerates disease
onset and progression. Lack of SOD1 is also not suf-
ficient to cause ALS in mice. Mice with SOD1 null alleles
have a number of interesting phenotypes but do not
develop symptoms of ALS (Reaume et al. 1996). To-
gether, these results suggest that mutations in SOD1
cause a novel toxic gain of function that is lethal to
motor neurons.

Although ALS is predominantly a disease of motor
neuron loss, neuronal expression of mutant SOD1 is
not sufficient to cause ALS. Overexpression of mutant
SOD1 in neurons or astrocytes alone does not cause
ALS or motor neuron death in transgenic mice (Gong
et al. 2000; Pramatarova et al. 2001; Lino et al. 2002).
Studies in chimeric mice, created from mixtures of nor-
mal and mutant SOD1-expressing cells, reveal that tox-
icity to motor neurons requires damage from mutant
SOD1 acting from within nonneuronal cells (Clement et
al. 2003). In the chimeras, motor neurons expressing
only wild-type SOD1 develop ALS pathology when ad-
jacent nonneuronal cells express mutant SOD1. Fur-
thermore, nonneuronal cells expressing only wild-type
SOD1 delay degeneration and extend survival of nearby
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motor neurons expressing mutant SOD1 in these chi-
meric mice (Clement et al. 2003). Because ALS pathol-
ogy is seen in the chimeras but not in the mice with
mutant SOD1 overexpression in the neurons or astro-
cytes alone, it appears that expression of mutant SOD1
in both cell types is necessary to initiate the disease pro-
cess. From there, SOD1 expression from nonneuronal
cells modulates disease progression, with the effect being
dependent on the form of SOD1 expressed.

Although the toxic gain of function of mutant SOD1
has not yet been elucidated, there are numerous hy-
potheses of SOD1-mediated toxicity. These have been
recently and expertly reviewed by others (e.g., Cleveland
and Rothstein 2001; Hand and Rouleau 2002; Heath
and Shaw 2002; McGeer and McGeer 2002; Ischiro-
poulos and Beckman 2003; Bruijn et al. 2004); however,
several major hypotheses, including oxidative stress, mi-
tochondrial dysfunction, excitotoxicity, inflammation,
and aggregation, will be summarized here. These mech-
anisms are not mutually exclusive, and the complicated
pathogenic process of ALS may include features of all
of them.

Because of its role of preventing cellular damage from
superoxide, one of the first hypotheses of SOD1-mediated
toxicity was copper-mediated oxidative and peroxidative
damage by a promiscuous mutant SOD1 enzyme. In sup-
port of this, there is evidence of lipid peroxidation and
nitrotyrosine formation in both transgenic models and
human patients with ALS (Dal Canto and Gurney 1995;
Beal et al. 1997). Some mutations in SOD1 make the
protein more susceptible to forming a zinc-deficient var-
iant (Crow et al. 1997; Estévez et al. 1999). The copper
in the zinc-deficient SOD1 becomes more accessible, al-
lowing SOD1 to participate in a number of deleterious
reactions, including oxidizing endogenous antioxidants
such as ascorbate, transferring electrons to oxygen to pro-
duce superoxide, and creating peroxynitrite from nitric
oxide (Estévez et al. 1998, 1999). In vitro experiments by
Estévez et al. (1999) have shown that zinc-deficient SOD1
kills motor neurons through a peroxynitrite dependent
mechanism. In support of this mechanism acting in vivo,
a specific inhibitor of neuronal nitric oxide synthase
(AR-R 17,477) was able to delay onset in the G93A
SOD1 mice (Facchinetti et al. 1999). However, G93A
SOD1 mice that also lack the neuronal nitric oxide syn-
thase gene develop ALS without a delay in disease onset
(Facchinetti et al. 1999), making the role of neuronal
nitric oxide and its by-products uncertain.

Additional experiments raise questions about the cop-
per-dependent hypothesis of SOD1-mediated toxicity.
SOD1 that has been engineered not to bind copper by
mutating the histidine residues required for copper bind-
ing (H46R/H48Q/H63G/H120G) causes ALS in trans-
genic mice (Wang et al. 2003). Furthermore, knocking
out the gene for the copper chaperone (CCS [MIM

603864]) that inserts copper into SOD1 has no effect
on the development of ALS in transgenic mice (Subra-
maniam et al. 2002). However, even in the CCS null
mice, there is residual SOD1 activity; therefore, this
mechanism cannot be ruled out entirely.

Substantial evidence links mutations in SOD1 to mi-
tochondrial dysfunction. Previously, SOD1 was consid-
ered an exclusively cytoplasmic protein; however, recent
studies show that ∼1%–2% of SOD1 is located in the
intermembrane space of mitochondria (Mattiazzi et al.
2002). Some researchers postulate that it is this mito-
chondrial pool of mutant SOD1 that triggers disease.
One of the first pathological changes in G93A and G37R
SOD1 transgenic mice is the development of large
membrane-bound vacuoles derived from degenerating
mitochondria in motor neurons (Dal Canto and Gurney
1995; Wong et al. 1995). G93A SOD1 mice also develop
metabolic defects in mitochondrial energy generation, in
both spinal cord and motor regions of the brain (Browne
et al. 1998; Jung et al. 2002; Mattiazzi et al. 2002).
Kong and Xu (1998) found evidence of a burst of de-
generating mitochondria within motor neurons imme-
diately prior to symptom onset in G93A SOD1 mice.
Recently, Liu et al. (2004) found that mutant SOD1—
but not wild-type SOD1—is selectively and aberrantly
recruited to the cytoplasmic face of mitochondria only
in tissues affected by ALS. This recruitment was inde-
pendent of enzymatic activity and the copper chaperone
for SOD1. Although some mutant SOD1 was correctly
imported into the intermembrane space, covalently dam-
aged adducts of mutant SOD1 accumulated on the cy-
toplasmic face of mitochondria in spinal cord. This
tissue-specific recruitment suggests that mitochondrial
abnormalities may be involved in disease initiation.

One observation in both sporadic and familial ALS
is the selective loss of the glial glutamate transporter
EAAT2 (MIM 600300) (Rothstein et al. 1995; Howland
et al. 2002) in some but not all patients and animal
models. EAAT2 (GLT1 in rodents) is responsible for
clearing 90% of the glutamate near motor neurons
(Cleveland and Rothstein 2001). Glutamate-mediated
excitotoxicity is thought to occur from the repetitive
firing or elevation of intracellular calcium by calcium-
permeable glutamate receptors. A role of glutamate-me-
diated excitotoxicity in both sporadic and familial dis-
ease is bolstered by the efficacy of riluzole, a compound
that antagonizes glutamate excitotoxicity, which is ef-
fective in slowing disease in both mice and humans (Gur-
ney et al. 1998; Miller et al. 2003).

There is growing evidence that inflammation and mi-
croglial activation play a role in the pathogenesis of ALS
(McGeer and McGeer 2002). Reactive microglia and
astrocytes accumulate in the areas surrounding degen-
erating motor neurons (reviewed by McGeer and Mc-
Geer 2002). Obal et al. (2001) demonstrated that intra-
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peritoneal injections of immunoglobulin G from human
patients with ALS caused the recruitment of activated
microglia to the ventral horn of the spinal cord of mice.
Numerous biochemical markers of inflammation are ob-
served in ALS spinal cord tissue. Both caspase 1 and
cyclooxygenase 2 are increased in spinal cord of mutant
SOD1 transgenic mice (McGeer and McGeer 2002;
Bruijn et al. 2004). These enzymes generate mature in-
terleukin-1b and prostaglandin E2, respectively. Both of
these diffusible compounds are proinflammatory and
can activate cell death. Supporting their role in ALS,
inhibitors of caspases and cyclooxygenase 2 have been
shown to prolong survival in G93A SOD1 transgenic
mice (Li et al. 2000; Klivenyi et al. 2004). Other markers
of inflammation are also increased in ALS. For example,
tumor necrosis factor a, which can activate apoptosis,
is up-regulated in the spinal cord of mutant G93A SOD1
mice (Elliott 2001). Taken together, these data suggest
that mutations in SOD1 directly or indirectly induce a
variety of inflammatory responses that may play a role
in the selective death of motor neurons.

A final, and perhaps favored, potential mechanism of
SOD1-mediated toxicity is aggregation of mutant SOD1.
Aggregates of misfolded mutant SOD1 protein in affected
motor regions are a common pathologic feature of mutant
SOD1 mouse models of ALS (Dal Canto and Gurney
1995; Bruijn et al. 1997a, 1998; Wang et al. 2002; Jons-
son et al. 2004). The effect of SOD1 aggregation may be
analogous to the effects of aggregates of mutant proteins
in other neurodegenerative diseases, such as Alzheimer
disease, Huntington disease, and Parkinson disease, in
which aggregation of mutated proteins causes oxidative
stress, depletes important cellular proteins, and disrupts
proteasome and chaperone function. In vitro experiments
have linked SOD1 aggregation to apoptotic cell death
(Durham et al. 1997; Roy et al. 1998). Watanabe et al.
(2001) found additional proteins in SOD1 aggregates,
including CCS; ubiquitin; neurofilaments; glial fibrillary
acidic protein (GFAP [MIM 137780]); two neuronal glu-
tamate transporters, GLAST (MIM 600111) and EAAC1
(MIM 133550); and proteins involved in chaperone and
proteasome functions. Overexpression of chaperones can
suppress mutant SOD1 aggregation, protect neuronal
function, and enhance survival of motor neurons in cul-
ture (Takeuchi et al. 2002). Arimoclomol, an inducer of
heat shock proteins, increased life span by 22% in the
G93A SOD1 mice (Kieran et al. 2004), further supporting
the hypothesis that aggregated SOD1 is toxic to motor
neurons.

Although SOD1 is ubiquitously expressed, aggregates
of mutant SOD1 are found only within the nervous sys-
tem of mutant SOD1 transgenic mice, despite the very
high concentrations of mutant SOD1 in other organs,
higher in liver or kidney than in spinal cord (Wang et
al. 2002; Puttaparthi et al. 2003). Puttaparthi et al.

(2003) used an organotypic spinal cord slice culture sys-
tem from G93A SOD1 mice to show that proteasome-
mediated protein degradation represents the major clear-
ance mechanism for SOD1 aggregates in spinal cord. It
is interesting that proteasome activity decreases most
prominently in spinal cord during aging, and this de-
crease correlates with accumulation and aggregation of
mutant SOD1 in vivo (Puttaparthi et al. 2003). These
observations may help to explain the selective vulnera-
bility of motor neurons to mutant SOD1 with increased
age.

Juvenile-Onset ALS Genes

There are three loci for juvenile onset ALS (table 1): one
is autosomal dominant, on chromosome 9q34 (ALS4
[MIM 602433]) (Chen et al. 2004); and two are auto-
somal recessive, on chromosomes 2q33 (ALS2 [MIM
205100]) (Hadano et al. 2001; Yang et al. 2001) and
15q15.1-q21.1 (ALS5 [MIM 602099]) (Hentati et al.
1998). In general, survival time from diagnosis is longer
and disease progression slower in the juvenile-onset
cases. The chromosome 2 and chromosome 9 genes have
been identified, whereas the chromosome 15 locus re-
mains to be identified.

ALS2: Alsin

Two groups (Hadano et al. 2001; Yang et al. 2001)
identified the chromosome 2 recessive ALS gene known
as “alsin” or ALS2 (MIM 606352). Alsin/ALS2 is al-
ternatively spliced to produce a long and a short tran-
script. It was originally hypothesized that deletions
affecting both transcripts result in ALS2, whereas ho-
mozygous deletions affecting just the long transcript
cause a related disease, juvenile primary lateral sclerosis
(Hadano et al. 2001; Yang et al. 2001). However, Ey-
mard-Pierre et al. (2002) found that mutations in alsin/
ALS2 could also cause infantile-onset ascending hered-
itary spastic paralysis (IAHSP), with no overt genotype-
phenotype correlation.

Alsin/ALS2 is an 184-kDa protein with three putative
guanine-nucleotide-exchange factor (GEF) domains. The
function of alsin/ALS2 is not yet well understood. Alsin/
ALS2, which has Rab5 activity (Otomo et al. 2003), can
act as a guanine nucleotide exchange factor for Rac1
(Topp et al. 2004) and appears to be important for en-
dosomal dynamics (Kunita et al. 2004). At least two
groups have created alsin/ALS2 knockout mice (Kriz et
al. 2003; Cai et al. 2003); however, no major phenotypes
consistent with ALS or other motor neuron disease have
yet been described. It is interesting that Kanekura et al.
(2004) recently discovered that the long isoform of alsin/
ALS2 specifically binds to mutant—but not to wild-
type—SOD1, via its RhoGEF domain. Expression of the
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long isoform of alsin/ALS2 protected motor neurons in
vitro from mutant SOD1-mediated toxicity. The physical
interactions between mutant SOD1 and alsin/ALS2 may
link the motor neuron-specific pathways of pathogenesis
in these two forms of familial ALS.

ALS4: Senataxin

The ALS4 locus, mapped to chromosome 9q34, was
originally identified in a single large family with auto-
somal dominant juvenile ALS. This family was unusual,
because life expectancy was normal, although the clin-
ical criteria were sufficient to diagnose ALS. Other motor
neuron disorders, including distal spinal muscular at-
rophy or spinal Charcot-Marie-Tooth syndrome, have
also been linked to this locus (De Jonghe et al. 2002),
but later clinical re-examination of these families re-
sulted in ALS diagnoses (Chen et al. 2004). Chen et al.
(2004) identified missense mutations in the senataxin
(SETX [MIM 608465]) gene in three families with au-
tosomal dominant juvenile ALS. Each family had a
distinct mutation—L389S, R2136H, and T3I—in the
SETX gene. Senataxin is a large protein with a super-
family I DNA/RNA helicase domain (Chen et al. 2004).
The majority of the protein appears novel, with no do-
main conservation or homology to other proteins for
much of its length (Chen et al. 2004). The exact function
of senataxin is not known, but DNA/RNA helicases are
involved in DNA repair, replication, recombination,
transcription, RNA processing, transcript stability, and
the initiation of translation. Recessive loss-of-function
mutations in SETX are associated with ataxia-oculo-
motor apraxia type 2 (Moreira et al. 2004). Ataxia-
oculomotor apraxia is a heterogeneous disorder char-
acterized by cerebellar ataxia/atrophy, oculomotor
apraxia, loss of reflexes, late peripheral neuropathy, and
immunodeficiency. The phenotypic differences between
these disorders and their distinct patterns of inheritance
suggest that the dominant ALS4 mutations cause a toxic
gain of function, resulting in a motor neuron–specific
phenotype, whereas the recessive loss-of-function mu-
tations cause a pleiotropic phenotype.

Atypical ALS

The symptoms of ALS can occasionally occur together
with Parkinson disease and dementia or frontotemporal
dementia (FTD [MIM 600274]) alone. FTD is a neu-
rodegenerative disorder involving degeneration of the
frontal and temporal cortices, accompanied by demen-
tia. Hosler et al. (2000) identified five families with
autosomal dominant ALS and FTD (ALS-FTD [MIM
105550]). The causative gene was mapped to a 17-cM
interval between D9S301 and D9S167 on chromosome
9q21 (Hosler et al. 2000). The ALS-FTD locus is as-
sociated with a range of phenotypes, and not all patients

develop all symptoms of ALS and FTD, suggesting that
the phenotype can be modulated by other genetic or
environmental influences. Although Hosler et al. (2000)
did not find any evidence for ALS-FTD genes on other
chromosomes, Ostojic et al. (2003) recently identified a
Swedish family with ALS-FTD without linkage to this
locus, suggesting that additional ALS-FTD loci remain
to be identified. Prudlo et al. (2004) identified a single
patient with ALS-FTD and a chromosomal transloca-
tion, t(18;21)(q23;q22), that may be associated with the
disease. Because this is an isolated case, it is difficult to
predict whether this balanced translocation is incidental
or associated with disease. In similar studies, Meyer et
al. (2003) demonstrated that patients with sporadic ALS
have, in general, a higher rate of constitutional chro-
mosomal rearrangement than does the general popula-
tion, but these studies have not been verified with a larger
patient population. If causally related to disease, these
unique translocations would provide a valuable resource
for the identification of additional ALS causative genes.

As described above, the symptoms of ALS can oc-
casionally occur together with Parkinson disease and
dementia. Mutations in the microtubule-associated pro-
tein tau (MAPT [MIM 157140]) gene are associated
with FTD with Parkinson disease, with ALS symptoms
sometimes associated with the phenotype (Clark et al.
1998; Hutton et al. 1998). The mutant tau, which is
encoded by the MAPT gene, forms insoluble aggregates
and filamentous inclusions that are associated with neu-
rodegeneration. Not all individuals with symptoms of
familial ALS with FTD and Parkinson disease have
MAPT mutations (Kowalska et al. 2003; Wilhelmsen
et al. 2004), suggesting that, as with ALS and ALS-FTD,
additional genes causing this constellation of symptoms
remain to be identified.

Puls et al. (2003) characterized a family with a dis-
order related to ALS that had a progressive, autosomal
dominant form of lower motor neuron disease without
sensory symptoms (MIM 607641). A single base-pair
change in the dynactin (DCTN1 [MIM 601143]) gene,
causing a G59S mutation in a single North American
family, was identified. The G59S mutation is located in
a highly conserved domain that binds to microtubules.
The interaction of dynactin with dynein is thought to
be required for the retrograde axonal transport of ves-
icles and organelles. Impaired axonal transport in motor
neurons has been proposed as a mechanism for neuronal
degeneration in motor neuron disease.

Genetics of Sporadic ALS

Glutamate Transporters and Receptors

As described above, suppressed expression of the glial
glutamate transporter EAAT2 occurs in ∼60% of patients
with sporadic ALS (Rothstein et al. 1995), implicating
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Table 2

Human Susceptibility and Modifier Loci

Gene MIM Number Chromosome Variant Association Reference

NEFH 162230 22q12.1-q13.1 KSP deletions Sporadic Al-Chalabi et al. 1999
VEGF 192240 6p12 Promoter SNPs Sporadic Lambrechts et al. 2003
SMN1 600354 5q12.2-q13.3 Copy number Sporadic Corcia et al. 2002
SMN2 601627 5q12.2-q13.3 Copy number Sporadic Veldink et al. 2001
CNTF 118945 11q12.2 Null allele Familial Giess et al. 2002
ApoE �4 107741 19q13.2 �4 genotype Sporadic Drory et al. 2001
EAAT2 600300 11p13-p12 Decreased expression Familial, sporadic Rothstein et al. 1995
GluR2 138247 4q32-q33 Altered RNA editing Sporadic Kawahara et al. 2004

glutamate excitotoxicity in the pathogenesis of sporadic
ALS. The mechanism of the selective loss of EAAT2 in
affected spinal cord regions may be the aberrant pro-
cessing of the EAAT2 transcript (Lin et al. 1998), but
ALS-specific aberrant splicing events have not been ob-
served by all investigators (e.g., Flowers et al. 2001). Ad-
ditional evidence for a role of glutamate excitotoxicity in
ALS comes from recent work by Kawahara et al. (2004).
They investigated the RNA editing of the GluR2 (MIM
138247) subunit of the glutamate AMPA receptor in pa-
tients with sporadic ALS and in controls. Under normal
conditions, RNA editing changes a glutamine to arginine
in virtually 100% of transcripts, rendering the channel
impermeable to calcium. In RNA-specific adenosine de-
aminase (ADAR2 [MIM 601218]) null mice, defects in
the GluR2 editing process lead to premature neuronal
death that can be rescued by restoring normal RNA ed-
iting function (Higuchi et al. 2000). GluR2 editing was
observed to be defective in spinal motor neurons from
patients with sporadic ALS but not in Purkinje cells, which
were isolated by laser capture microdissection. Control
samples showed 100% editing in all analyzed cells, sug-
gesting that there is an ALS-specific motor neuron defect
in GluR2 RNA editing that may be involved in the process
of motor neuron death (Kawahara et al. 2004).

Neurofilaments

The abnormal accumulation of neurofilaments in the
cell bodies and proximal axons of motor neurons is a
hallmark of the pathogenesis of ALS (Rouleau et al.
1996). There is evidence that mutations in the neurofi-
lament heavy (NF-H, or NEFH [MIM 162230]) gene
are associated with a small fraction of ALS in a subset
of cases and may predispose to disease development (Al-
Chalabi et al. 1999). These mutations do not segregate
with disease in familial ALS (Cleveland 1999) and, thus,
are either not directly causative or act at low penetrance.
However, genetic manipulations of neurofilament sub-
unit expression in transgenic mice have confirmed the
importance of neurofilaments in motor neuron integrity.
First, the overexpression of NF-H, NF-L, and peripherin,
as well as the disrupted activity of the microtubule-mo-
tor dynein, all cause development of paralytic pheno-

types associated with motor neuron degeneration and
muscle denervation (reviewed by Lariviere and Julien
[2004]). Other alterations in neurofilament gene ex-
pression are beneficial in the mutant SOD1 mouse mod-
els of ALS. For example, disease development in the
G85R SOD1 mice is delayed on an NF-L null back-
ground (Williamson et al. 1998). NF-L is the major neu-
rofilament subunit required for filament assembly; thus,
in NF-L null mice, NF-M and NF-H are not assembled
and transported correctly, resulting in reduced levels in
axons but increased levels in motor neuron cell bodies.
This may explain why the overexpression of human NF-
H increased the mean life span of the G37R SOD1 mice
by 65% (Couillard-Després et al. 1998).

Vascular Endothelial Growth Factor

Lambrechts et al. (2003) have shown that vascular
endothelial growth factor (VEGF [MIM 192240]) is a
modifier of ALS in both mice and humans. When the
hypoxia-responsive element was deleted from the VEGF
promoter, mice developed a late-onset motor neuron dis-
ease reminiscent of ALS (Oosthuyse et al. 2001). When
these VEGF mice were bred to G93A SOD1 mice, ALS
onset was accelerated, reducing the mean age at death
from 124 to 107 d ( [Lambrechts et al. 2003]).P p .001
Further studies revealed that certain SNPs in the human
VEGF gene were associated with both reduced VEGF
expression and increased ALS risk (Lambrechts et al.
2003), suggesting a link between VEGF expression levels
and ALS susceptibility.

Survival of Motor Neuron

Homozygous deletions of the survival of motor neu-
ron gene (SMN1 [MIM 600354]) on chromosome 5
cause spinal muscular atrophy (SMA [MIM 253300]),
a fatal childhood-onset neuromuscular disease charac-
terized by the death of spinal motor neurons and sub-
sequent muscle paralysis. A second highly conserved
gene, SMN2 (MIM 601627), has five nucleotide differ-
ences between intron 6 and exon 8 that distinguish it
from SMN1. One of these polymorphisms causes fre-
quent skipping of exon 7 and very low levels of intact
SMN2 protein as a result. One study of 110 patients
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with ALS and 100 controls found that SMN2 gene de-
letions were overrepresented in patients with sporadic
ALS (16%) when compared with controls (4%) and may
be risk factors for motor neuron disease development
(Veldink et al. 2001). In a similar study, Corcia et al.
(2002) investigated 167 patients with ALS and their un-
affected spouses for SMN1 and SMN2 copy number.
Surprisingly, 16% of patients with ALS had an abnormal
copy number of SMN1 (one or three copies), versus 4%
of controls. In contrast to the results of Veldink et al.
(2001), no differences in SMN2 copy number were ob-
served between the groups. Although the SMN gene in-
volved differs between the studies, both implicate a role
for SMN copy number in the risk of developing ALS.
Further studies are needed to clarify the role of the
SMN1 and SMN2 genes in sporadic ALS.

Ciliary Neurotrophic Factor

Although there is considerable phenotypic heteroge-
neity within families with mutant SOD1–mediated ALS,
Giess et al. (2002) searched for modifier loci in an un-
usual family with ALS. A 25-year-old man carrying a
V148G SOD1 mutation died from ALS 11 mo after
disease onset. His mother and three other family mem-
bers developed ALS between the ages of 43 and 62 years.
His 35-year-old carrier sister remained asymptomatic.
Because of the early onset and rapid progression of dis-
ease in this individual, several candidate modifier loci
were analyzed. A homozygous null mutation in his cil-
iary neurotrophic factor (CNTF [MIM 118945]) gene,
a potent survival factor for motor neurons, was iden-
tified. The other patients with ALS and the unaffected
sister were either wild-type or heterozygous at the CNTF
locus. Because of this result, Giess et al. (2002) bred
CNTF null mice to G93A SOD1 transgenic mice to cre-
ate CNTF�/�/G93A SOD1 mice. In these mice, ALS de-
veloped significantly earlier ( ), although diseaseP ! .001
duration was unaffected. Similarly, ALS onset occurred
∼10 years earlier ( versus years) in48.6 � 15 58.4 � 9
8 people with the CNTF�/� genotype compared with 30
CNTF�/� controls. As with the mouse model, disease
duration was not affected, suggesting that CNTF ge-
notype affects susceptibility to disease initiation but not
disease progression.

Apolipoprotein E

The apolipoprotein E (ApoE [MIM 107741]) �4 ge-
notype is known to be associated with a lowered age at
Alzheimer disease onset; therefore, Drory et al. (2001)
genotyped 100 consecutive patients with ALS and 133
controls for the ApoE �4 allele. Although the frequency
of the ApoE �4 allele was slightly higher in patients with
ALS (15.1%) versus controls (10.9%), there was no as-
sociation between ApoE genotype and age at ALS onset.

However, Kaplan Meier survival analysis demonstrated
that the ApoE �4 genotype correlated with a shortened
survival (32 mo; ) after diagnosis compared withP p .03
other ApoE genotypes, suggesting that ApoE �4 can ef-
fect disease progression but not onset. This result is
somewhat controversial, since it has not been observed
by all groups (e.g., Siddique et al. 1998b).

Gene-Environment Interactions

Many genes that play a role in the pathogenesis of ALS
have been identified or mapped; however, because ALS is
predominantly sporadic in origin, environmental triggers
are clearly involved in disease initiation. Very few ALS
environmental risks have been identified, perhaps because
the triggers act only in a genetically susceptible individual.
There is an unusual ALS variant in Guam and other
regions of the Western Pacific called “ALS-PDC” (par-
kinsonism-dementia complex) that appears to result from
eating toxins from the cycad nut that have been concen-
trated in flying foxes (Banack and Cox 2003). This diet-
induced disease can be recapitulated in mice by feeding
them washed cycad flour (Wilson et al. 2002). The mouse
model shares many of the features of traditional ALS,
including reduced expression of the glial glutamate trans-
porter EAAT2/GLT-1 (Wilson et al. 2003). The identifi-
cation of other environmental risk factors for ALS has
been difficult, but a number of potential disease triggers
have been identified, including smoking, BMI, a gluta-
mate-rich diet, heavy-metal exposure, and military service
including the first Gulf War (Kamel et al. 1999, 2003;
Nelson et al. 2000a, 2000b; Scarmeas et al. 2002; Armon
2003; Haley 2003; Weisskopf et al. 2004).

ALS Therapy Development

Riluzole, the only FDA-approved treatment for ALS,
works as well in the SOD1 mouse model as it does in
people with sporadic ALS (e.g., Gurney et al. 1998).
Therefore, the mutant SOD1 models are used extensively
for drug screening. However, these model organisms
have several significant limitations. Because of the rapid
disease progression in these mice, treatment typically be-
gins presymptomatically, something that is currently not
possible in human sporadic ALS. Furthermore, therapies
that work presymptomatically may target disease initi-
ation from mutant SOD1 rather than disease propaga-
tion, which is ultimately the necessary target for human
ALS treatment and which may be a process distinct from
disease initiation. In spite of these weaknesses, the SOD1
mutant mice and rats remain the best animal models for
ALS. Drugs tested for efficacy in ALS have targeted many
of the pathways implicated in disease pathogenesis, in-
cluding protein aggregation, apoptosis, cell cycle regu-
lation, excitotoxicity, immune system regulation, inflam-
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Figure 1 Therapeutic approaches utilized in the mutant SOD1 trangenic mice. A variety of therapeutic genes and agents have been tested
in the mutant SOD1 transgenic mice. Treatments discussed in the text are in boldface type. The asterisk (*) reflects a result that was observed
in G93A but not G85R SOD1 mice.

mation, mitochondrial function, and oxidative stress
(fig. 1). Treatment regimens including vitamins, antibi-
otics, pain medication, carboxyfullerenes, bone marrow
transplantation, and stem cells have been tried as ther-
apeutics in the mice (fig. 1) (see, e.g., Bruijn 2002). While
many trials are carried out in academic laboratories, the
ALS Therapy Development Foundation initiates four to
six drug-screening studies each month in the G93A
SOD1 mouse model, with ∼12 drug studies ongoing at
any given time (ALS Therapy Development Foundation
Treatment Targets Web site). A number of compounds,
such as creatine and coenzymeQ10, extend life span,
delay the onset of motor impairment, protect against
motor neuron loss, and decrease the evidence of oxi-
dative stress in mouse models of disease (Matthews et
al. 1998; Klivenyi et al. 1999). However, not all com-
pounds that are efficacious in mice are effective in pa-
tients with ALS. For example, Groeneveld et al. (2003)
demonstrated that, although creatine is effective in the
G93A SOD1 mouse model of ALS, it did not effect

survival or disease progression in patients with ALS in
a recent clinical trial.

Because of their striking neuroprotective effects in
vitro, a variety of neurotrophic factors, such as CNTF,
glial cell–derived neurotrophic factor (GDNF [MIM
600837]), brain-derived neurotrophic factor (BDNF
[MIM 113505]), and insulin growth factor 1 (IGF-1
[MIM 113505]), have been largely unsuccessful in hu-
man clinical trials for the treatment of ALS (see, e.g.,
Bruijn 2002). Only IGF-1 has had marginal success in
one of two clinical trials (Mitchell et al. 2002). Although
these agents are strongly neuroprotective in vitro, their
limited efficacy in vivo may be due to the limited ability
of these compounds to cross the blood-brain barrier.
Two recent studies exploited the retrograde transport
ability of some recombinant viral vectors to deliver IGF-
1, GDNF, and VEGF to motor neurons and surrounding
cells in ALS mouse models (Kaspar et al. 2003; Azzouz
et al. 2004). Retrograde transport from motor neurons
that innervate muscles requires the virus to bind to re-
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ceptors on the axon terminal, with subsequent transport
to the motor neuron nucleus, allowing sustained gene
expression. These studies are extraordinarily promising,
since the treatment regimens not only delayed disease
onset but could slow disease progression when initiated
after onset of symptoms.

Kaspar et al. (2003) used the retrograde transport
ability of adeno-associated virus (AAV) to directly target
affected motor neurons, to test the efficacy of IGF-1 and
GDNF in the G93A SOD1 mouse model of ALS. In
injections into the quadriceps muscle, as much as 1.1%
of the virus injected at a dose of viral particles101 # 10
was transported to the lumbar region of the spinal cord,
as assessed by quantitative PCR. The AAV vectors ex-
pressing GDNF or IGF-1 were bilaterally injected into
the hindlimb quadriceps and intercostal muscles of
G93A SOD1 animals before disease onset at 60 d of
age, with a dosage of particles per injection101 # 10
(Kaspar et al. 2003). IGF-1 and GDNF treatment de-
layed ALS onset by 31 and 16 d and increased median
survival by 37 and 16 d, respectively, compared with
GFP-treated controls. Injections of IGF-1 not only de-
layed the onset but also slowed the rate of disease pro-
gression in some mice. In contrast, GDNF delayed the
onset of symptoms but did not alter disease progression.

To test the ability of the IGF-1 and GDNF treatments
to affect disease after it had begun, Kaspar et al. (2003)
used the same treatment protocol on mice that were 90
d old, the age at which symptoms begin. In this treat-
ment regimen, GDNF treatment caused a 7-d extension
in survival ( ). In contrast, IGF-1 treatment ex-P ! .0001
tended the median life span by 22 d and slowed pro-
gression of the disease, as assessed by body mass loss,
rotarod performance, and grip strength. These com-
bined results suggest that treatment with IGF-1 after the
onset of overt motor dysfunction results not only in an
extension of life but also in a delay in the functional
decline associated with the disease.

In similar studies, Azzouz et al. (2004) used a recom-
binant lentiviral vector (rabies-G pseudotyped equine
infectious anemia virus), which also exhibits retrograde
transport, to test the effect of human VEGF expression
on ALS onset in the G93A SOD1 mice. This experiment
was based on the previous observation that low levels
of VEGF expression correlate with ALS susceptibility
(Lambrechts et al. 2003). Bilateral injections of VEGF
viral vectors into hindlimb gastrocnemius, diaphragm,
intercostal, facial, and tongue muscles at 3 wk of age
significantly ( ) delayed ALS onset (95–123 d)P ! .0001
and increased the average life span (125–163 d) (Azzouz
et al. 2004). Like Kaspar et al. (2003), Azzouz et al.
(2004) also treated the symptomatic 90-d-old G93A
SOD1 mice, increasing survival from 127 d to 146 d
( ). Like IGF-1, VEGF is an effective treatmentP ! .0001
after disease onset and appears to both delay initiation

and slow propagation of disease in the G93A SOD1
mice.

Future Directions

It is difficult to predict the future, but the identification
of both additional ALS genes and ALS modifier genes
will allow the creation of new models for study. The
utility of such models for understanding the pathogen-
esis of ALS has been demonstrated in the mutant SOD1
mice. Mechanistic insights gleaned from new ALS genes
and mouse models will uncover new targets for therapy
development. The testing of synergistic combinations of
therapeutics targeting multiple pathogenic mechanisms
has already begun, and such studies will likely be ex-
panded. If safety issues with gene therapy vectors can
be ameliorated, clinical trials with IGF-1 or VEGF would
be worth pursuing, since they are effective in model or-
ganisms after symptomatic onset of disease. One poten-
tial approach to ALS therapy, not discussed in detail
above, is treatment with stem cells. Human safety studies
for intraspinal cord implantation of autologous mes-
enchymal stem cells have already begun in patients with
ALS (Mazzini et al. 2003), and clinical trials with stem
cells, perhaps as delivery vehicles for neurotrophic fac-
tors, may be conducted in the future. Therapy devel-
opment has unfortunately lagged behind the elucidation
of the genetic and pathogenic mechanisms involved in
ALS. The future, however, is bright. Because it is possible
to slow disease progression in mouse models of familial
ALS after symptomatic onset of disease, the creation of
effective therapies for ALS is likely an achievable task.

Note added in proof.—The ALS8 locus (table 1) was
recently identified. A missense mutation in the vesicle-
associated membrane protein/synaptobrevin-associated
membrane protein B (VAPB [MIM 605704]) was dis-
covered in several families with ALS and related motor
neuron diseases (Nishimura et al. 2004b).

Acknowledgments

This work was supported by National Institutes of Health
grant NS041646. I would like to thank Dr. David Patterson,
Dr. Patrick Bosque, Dr. Miles Brennan, and Sharon Trilk, for
helpful comments and corrections.

Electronic-Database Information

The URLs for data presented herein are as follows:

alsod.org: The ALS Online Database, http://www.alsod.org/
ALS Therapy Development Foundation, http://www.als.net/
ALS Therapy Development Foundation Treatment Targets,

http://www.als.net/research/treatments/targetClasses.asp
Motor Syndromes, http://www.neuro.wustl.edu/neuromuscular

/motor.html



Kunst: Complex Genetics of ALS 943

Online Mendelian Inheritance in Man (OMIM), http://www
.ncbi.nlm.nih.gov/Omim/ (for ALS1, SOD1, CCS, EAAT2,
GFAP, GLAST, EAAC1, ALS4, ALS2, ALS5, alsin, SETX,
ALS-FTD, MAPT, FTD, progressive motor neuron disease
without sensory symptoms, DCTN1, GluR2, ADAR2, NF-
H, VEGF, SMN1, SMA, SMN2, CNTF, ApoE, GDNF,
BDNF, IGF-1, ALS3, ALS6, ALS7, ALS8, VAPB, and ALS
X)

Revised Criteria for the Diagnosis of Amyotrophic Lateral
Sclerosis (El Escorial Revisited), http://www.wfnals.org/
guidelines/1998elescorial/elescorial1998.htm

References

Abalkhail H, Mitchell J, Habgood J, Orrell R, de Belleroche
J (2003) A new familial amyotrophic lateral sclerosis locus
on chromosome 16q12.1-16q12.2. Am J Hum Genet 73:
383–389

Al-Chalabi A, Andersen PM, Chioza B, Shaw C, Sham PC,
Robberecht W, Matthijs G, Camu W, Marklund SL, Fors-
gren L, Rouleau G, Laing NG, Hurse PV, Siddique T, Leigh
PN, Powell JF (1998) Recessive amyotrophic lateral sclerosis
families with the D90A SOD1 mutation share a common
founder: evidence for a linked protective factor. Hum Mol
Genet 7:2045–2050

Al-Chalabi A, Andersen PM, Nilsson P, Chioza B, Andersson
JL, Russ C, Shaw CE, Powell JF, Leigh PN (1999) Deletions
of the heavy neurofilament subunit tail in amyotrophic lat-
eral sclerosis. Hum Mol Genet 8:157–164

Andersen PM, Nilsson P, Keranen M-L, Forsgren L, Hagglund
J, Karlsborg M, Ronnevi L-O, Gredal O, Marklunk SL
(1997) Phenotypic heterogeneity in motor neuron disease
patients with CuZn-superoxide dismutase mutations in
Scandinavia. Brain 120:1723–1737

Andersen PM, Sims KB, Xin WW, Kiely R, O’Neill G, Ravits
J, Pioro E, Harati Y, Brower RD, Levine JS, Heinicke HU,
Seltzer W, Boss M, Brown RH Jr (2003) Sixteen novel mu-
tations in the Cu/Zn superoxide dismutase gene in amy-
otrophic lateral sclerosis: a decade of discoveries, defects and
disputes. Amyotroph Lateral Scler Other Motor Neuron
Disord 4:62–73

Armon C (2003) Epidemiology of amyotrophic lateral scle-
rosis/motor neuron disease. In: Shaw PJ, Strong MJ (eds)
Motor neuron disease (Blue Book). Butterworth-Heine-
mann, Philadelphia, pp 167–205

Azzouz M, Ralph GS, Storkebaum E, Walmsley LE, Mitro-
phanous KA, Kingsman S M, Carmeliet P, Mazarakis ND
(2004) VEGF delivery with retrogradely transported lenti-
vector prolongs survival in a mouse ALS model. Nature 429:
413–417

Banack SA, Cox PA (2003) Biomagnification of cycad neu-
rotoxins in flying foxes: implications for ALS-PDC in Guam.
Neurology 61:387–389

Beal MF, Ferrante RJ, Browne SE, Matthews RT, Kowall NW,
Brown RH Jr (1997) Increased 3-nitrotyrosine in both spo-
radic and familial amyotrophic lateral sclerosis. Ann Neurol
42:644–654

Brannstrom T, Ernhill K, Marklund S, Nilsson P (1998) Trans-
genic mice homozygous for the Asp90Ala human SOD1 mu-
tation develop ALS clinically and histologically. Paper pre-

sented at the Annual Meeting of the Society for Neuroscience,
Los Angeles, November 7–12

Browne SE, Bowling AC, Baik MJ, Gurney M, Brown RH Jr,
Beal MF (1998) Metabolic dysfunction in familial, but not
sporadic, amyotrophic lateral sclerosis. J Neurochem 71:
281–287

Bruijn LI (2002) Amyotrophic lateral sclerosis: from disease
mechanisms to therapies. BioTechniques 32:1112–1121

Bruijn LI, Beal MF, Becher MW, Schulz JB, Wong PC, Price
DL, Cleveland DW (1997a) Elevated free nitrotyrosine lev-
els, but not protein-bound nitrotyrosine or hydroxyl radi-
cals, throughout amyotrophic lateral sclerosis (ALS)-like
disease implicate tyrosine nitration as an aberrant in vivo
property of one familial ALS-linked superoxide dismutase
1 mutant. Proc Natl Acad Sci USA 94:7606–7611

Bruijn LI, Becher MW, Lee MK, Anderson KL, Jenkins NA,
Copeland NG, Sisodia SS, Rothstein JD, Borchelt DR, Price
DL, Cleveland DW (1997b) ALS-linked SOD1 mutant
G85R mediates damage to astrocytes and promotes rapidly
progressive disease with SOD1-containing inclusions. Neu-
ron 18:327–338

Bruijn LI, Houseweart MK, Kato S, Anderson KL, Anderson
SD, Ohama E, Reaume AG, Scott RW, Cleveland DW (1998)
Aggregation and motor neuron toxicity of an ALS-linked
SOD1 mutant independent from wild-type SOD1. Science
281:1851–1854

Bruijn LI, Miller TM, Cleveland DW (2004) Unraveling the
mechanisms involved in motor neuron degeneration in ALS.
Ann Rev Neurosci 27:723–749

Cai H, Wen H, Chaing HC, Price DL, Wong PC (2003) Phys-
iological role of ALS2: selective vulnerability and generation
of ALS2 knockout mice. Amyotroph Lateral Scler Other
Motor Neuron Disord 4 Suppl 1:11–12

Chen Y-Z, Bennet CL, Huynh HM, Blair IP, Puls I, Irobi J,
Dierick I, Abel A, Kennerson ML, Rabin BA, Nicholson GA,
Auer-Grumbach M, Wagner K, De Jonghe P, Griffin JW,
Fischbeck KH, Timmerman V, Cornblath DR, Chance PF
(2004) DNA/RNA helicase gene mutations in a form of ju-
venile amyotrophic lateral sclerosis (ALS4). Am J Hum Ge-
net 74:1128–1135

Clark LN, Poorkaj P, Wszolek Z, Geschwind DH, Nasreddine
ZS, Miller B, Li D, Payami H, Awert F, Markopoulou K,
Andreadis A, D’Souza I, Lee VM, Reed L, Trojanowski JQ,
Zhukareva V, Bird T, Schellenberg G, Wilhelmsen KC (1998)
Pathogenic implications of mutations in the tau gene in pal-
lido-ponto-nigral degeneration and related neurodegenera-
tive disorders linked to chromosome 17. Proc Natl Acad Sci
USA 95:13103–13107

Clement AM, Nguyen MD, Roberts EA, Garcia ML, Boillee
S, Rule M, McMahon AP, Doucette W, Siwek D, Ferrante
RJ, Brown RH Jr, Julien JP, Goldstein LS, Cleveland DW
(2003) Wild-type nonneuronal cells extend survival of SOD1
mutant motor neurons in ALS mice. Science 302:113–117

Cleveland DW (1999) From Charcot to SOD1: mechanisms
of selective motor neuron death in ALS. Neuron 24:515–
520

Cleveland DW, Rothstein JD (2001) From Charcot to Lou
Gehrig: deciphering selective motor neuron death in ALS.
Nat Rev Neurosci 2:806–819

Corcia P, Mayeux-Portas V, Khoris J, de Toffol B, Autret A,



944 Am. J. Hum. Genet. 75:933–947, 2004

Muh JP, Camu W, Andres C, French ALS Research Group
(2002) Abnormal SMN1 gene copy number is a suscepti-
bility factor for amyotrophic lateral sclerosis. Ann Neurol
51:243–246

Couillard-Després S, Zhu Q, Wong PC, Price DL, Cleveland
DW, Julien JP (1998) Protective effect of neurofilament
heavy gene overexpression in motor neuron disease induced
by mutant superoxide dismutase. Proc Natl Acad Sci USA
95:9626–9630

Crow JP, Sampson JB, Zhuang Y, Thompson JA, Beckman JS
(1997) Decreased zinc affinity of amyotrophic lateral scle-
rosis-associated superoxide dismutase mutants leads to en-
hanced catalysis of tyrosine nitration by peroxynitrite. J
Neurochem 69:1936–1944

Cudkowicz ME, McKenna-Yasek D, Sapp PE, Chin W, Geller
B, Hayden DL, Schoenfeld DA, Hosler BA, Horvitz HR,
Brown RH (1997) Epidemiology of mutations in superoxide
dismutase in amyotrophic lateral sclerosis. Ann Neurol 41:
210–221

Dal Canto MC, Gurney ME (1995) Neuropathological
changes in two lines of mice carrying a transgene for mutant
human Cu,Zn SOD, and in mice overexpressing wild type
human SOD: a model of familial amyotrophic lateral scle-
rosis (FALS). Brain Res 676:25–40

De Jonghe P, Auer-Grumbach M, Irobi J, Wagner K, Plecko
B, Kennerson M, Zhu D, De Vriendt E, Van Gerwen V,
Nicholson G, Hartung H-P, Timmerman V (2002) Auto-
somal dominant juvenile amyotrophic lateral sclerosis and
distal hereditary motor neuronopathy with pyramidal tract
signs: synonyms for the same disorder? Brain 125:1320–
1325

Deng H-X, Fu R, Zhai H, Siddique T (1999) A truncation
mutation (L126Z) of SOD1 gene leads to ALS-like pheno-
type in transgenic mice. Am J Hum Genet Suppl 65:A292

Drory VE, Birnbaum M, Korczyn AD, Chapman (2001) As-
sociation of APOE �4 allele with survival in amyotrophic
lateral sclerosis. J Neurol Sci 190:17–20

Durham HD, Roy J, Dong L, Figlewicz DA (1997) Aggregation
of mutant Cu/Zn superoxide dismutase proteins in a culture
model of ALS. J Neuropathol Exp Neurol 56:523–530

Elliott JL (2001) Cytokine upregulation in a murine model of
familial amyotrophic lateral sclerosis. Brain Res Mol Brain
Res 95:172–178
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